Action of automorphisms on irreducible characters of symplectic groups
نویسندگان
چکیده
منابع مشابه
Action of Automorphisms on Irreducible Characters of Symplectic Groups
Assume G is a finite symplectic group Sp2n(q) over a finite field Fq of odd characteristic. We describe the action of the automorphism group Aut(G) on the set Irr(G) of ordinary irreducible characters of G. This description relies on the equivariance of Deligne–Lusztig induction with respect to automorphisms. We state a version of this equivariance which gives a precise way to compute the autom...
متن کاملOn the irreducible characters of Camina triples
The Camina triple condition is a generalization of the Camina condition in the theory of finite groups. The irreducible characters of Camina triples have been verified in the some special cases. In this paper, we consider a Camina triple (G,M,N) and determine the irreducible characters of G in terms of the irreducible characters of M and G/N.
متن کاملon the number of the irreducible characters of factor groups
let $g$ be a finite group and let $n$ be a normal subgroup of $g$. suppose that ${rm{irr}} (g | n)$ is the set of the irreducible characters of $g$ that contain $n$ in their kernels. in this paper, we classify solvable groups $g$ in which the set $mathcal{c} (g) = {{rm{irr}} (g | n) | 1 ne n trianglelefteq g }$ has at most three elements. we also compute the set $mathcal{c}(g)$ for suc...
متن کاملTheta functions on covers of symplectic groups
We study the automorphic theta representation $Theta_{2n}^{(r)}$ on the $r$-fold cover of the symplectic group $Sp_{2n}$. This representation is obtained from the residues of Eisenstein series on this group. If $r$ is odd, $nle r
متن کاملIrreducible characters of Sylow $p$-subgroups of the Steinberg triality groups ${}^3D_4(p^{3m})$
Here we construct and count all ordinary irreducible characters of Sylow $p$-subgroups of the Steinberg triality groups ${}^3D_4(p^{3m})$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2018
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2018.03.008